Effect of salts and electron transport on the conformation of isolated chloroplasts. I. Light-scattering and volume changes.
نویسندگان
چکیده
Whole chloroplasts isolated from the leaves of spinach (Spinacia oleracea L.) exhibit 2 types of conformational change during electron transport. Amine-uncoupled chloroplasts swell and atebrin-uncoupled chloroplasts shrink. Chloroplasts uncoupled by carbonylcyanide phenylhydrazones and by treatment with ethylenediamine tetraacetic acid do not change their volumes or light-scattering properties during electron transport. Phosphorylating chloroplasts shrink only slightly.The rate and extent of the conformational change parallel the rate of electron transport; both the decrease in turbidity with methylamine and the increase in turbidity with atebrin are rougly proportional to the Hill reaction rate. Consequently the great volume and light-scattering changes which occur in the presence of these uncouplers can be attributed, in part, to the very high rates of uncoupled electron transport. However, for a given rate of electron transport the atebrin-induced scattering increase is very much greater than the increase observed during photophosphorylation.When uncouplers are combined, the carbonylcyanide phenylhydrazone effect (no change) supercedes both the methylamine effect (swelling) and the atebrin effect (shrinking). The methylamine effect supercedes the atebrin (shrinking) and ethylenediamine tetracetic acid (no change) effects. The atebrin effect supercedes the ethylenediamine tetraacetic acid effect. A similar hierarchy of effects is observed with regard to the rate of the uncoupled electron transport.These light-scattering changes of whole chloroplasts reflect similar changes which occur in very small digitonin particles of chloroplasts. Therefore one must look among chloroplast substructures for the basic mechanism of swelling and shrinking.Many salts (including methylamine hydrochloride) cause the chloroplasts to shrink. This phenomenon is not osmotic since comparable osmolarities of sucrose are without effect. Magnesium chloride and calcium chloride are most effective but all salts tested gave major volume decrease when less than 0.05 m. The salt-shrunken chloroplasts show greater light-scattering changes during electron transport than do low-salt chloroplasts.
منابع مشابه
Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy.
Spinach chloroplasts isolated in media containing salts and the rare chloroplasts which are still within their envelopes alike retain grana similar to those seen in chloroplasts in situ.Chloroplasts isolated in low-salt media lose their grana without losing any chlorophyll. These grana-free chloroplasts are considerably swollen and consist almost entirely of continuous sheets of paired-membrane...
متن کاملRegulation of Photosynthetic Electron Transport in Intact Spinach Chloroplasts: I. INFLUENCE OF EXOGENOUS SALTS ON OXALOACETATE REDUCTION.
Relatively high concentrations of monovalent salts (150 millimolar) stimulated light-saturated uncoupled rates of O(2) evolution linked to oxaloacetic acid (OAA) reduction by intact chloroplasts 2-to 3-fold. In contrast, monovalent salts partially inhibited light-saturated rates of O(2) evolution coupled to CO(2) fixation and uncoupled rates of nitrite reduction. In the presence of high salt co...
متن کاملInhibition of Photosystem II in Isolated Chloroplasts by Lead.
Inhibition of photosynthetic electron transport in isolated chloroplasts by lead salts has been demonstrated. Photosystem I activity, as measured by electron transfer from dichlorophenol indophenol to methylviologen, was not reduced by such treatment. However, photosystem II was inhibited by lead salts when electron flow was measured from water to methylviologen and Hill reaction or by chloroph...
متن کاملEffect of light quality on the organization of photosynthetic electron transport chain of pea seedlings.
The activity of NADP and O(2) photoreduction by water is essentially higher in chloroplasts isolated from pea seedlings (Pisum sativum L.) grown under blue light as compared with that from plants grown under red light. In contrast, the photoreduction of NADP and O(2) with photosystem I only is practically the same or even lower in chloroplasts isolated from plants grown under blue light. The ad...
متن کاملLight-dependent volume changes and reactions in chloroplasts. I. Action of alkenylsuccinic acids and phenylmercuric acetate and possible relation to mechanisms of stomatal control.
Clhloroplasts are known to change their volume in vitro by 3 mechanisms. Light and osmotic pressure appear to be the most significant factors for controlling chloroplast volume. The simplest tvpe of volume change shown by isolated chloroplasts has been described by Nishida (8), who found by absorbancy, gravimetric, and volumetric techniques that chloroplasts change their volume in response to e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 41 3 شماره
صفحات -
تاریخ انتشار 1966